t^2+12t-15=0

Simple and best practice solution for t^2+12t-15=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for t^2+12t-15=0 equation:



t^2+12t-15=0
a = 1; b = 12; c = -15;
Δ = b2-4ac
Δ = 122-4·1·(-15)
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{51}}{2*1}=\frac{-12-2\sqrt{51}}{2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{51}}{2*1}=\frac{-12+2\sqrt{51}}{2} $

See similar equations:

| 0.8^(n)=0.5 | | 2x/3-x/4=x/5- | | ,5t^2-7t-60=0 | | 8x-9=4×+15 | | 3^2x-4*3^x+1+27=0 | | 23+3x=5^6/5^3 | | -r=-23 | | 9=y-(-2) | | ((-32/5)+y)/2=3(-32/5)-2y+16 | | 2^2x+4–9(2^x)=0 | | 2x²+3x+15=0 | | 5x²=2x²+x+10 | | 2y2+8y−10=0 | | (D²+1)y=0 | | 3/x=4/3x—10/3 | | 6(5a+4)-1=-5a-12 | | 3(2x-3)+3x=6x+24 | | 8(x+2)=4(4x-2) | | 2(4x+6)=4(x-1) | | 9(x+2)=3(2x-1) | | 5x+9=2(x-15) | | 51=2x+x/3 | | 3(5x-8)=7x+40 | | 5(3x+8)=5x+90 | | 4(2x-6)=2x+12 | | -4x-2=-12x+22 | | x2+10x−875+875=0+875 | | 5x2=2x-5 | | -7x+8=-3+32 | | X/3+31=1+x/6 | | 15x+(1-x)=11-x | | a(a)(a+1)(a+1)(a+2)(a+2)=1680 |

Equations solver categories